If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+4n-36=0
a = 1; b = 4; c = -36;
Δ = b2-4ac
Δ = 42-4·1·(-36)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*1}=\frac{-4-4\sqrt{10}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*1}=\frac{-4+4\sqrt{10}}{2} $
| -10/2=x | | 64/64=x | | 14+3x=x-8 | | 5/1=x | | |y+7/9|=|y-8/9| | | 6w+8=6(w+4)-22 | | 2(7+3x)=x-8 | | 176=16+x | | 2/5(y-1)-8/5=-2 | | 1.5y+2=1.9y | | x/4=33 | | 6^(4x-1)=51 | | 0.70x=6+0.20x | | 8=3y+14 | | 18+0.07x=12+0.11x | | 3s-2=6 | | x/x+7=11 | | 6x+x=13 | | y=4.75+4 | | 3d-28=–d+1614 | | 7x-2+28=9x+12 | | -27=9(x-2) | | 1/2(6x-4)=15 | | 4(y+2)=44 | | 6+x^2=30 | | (x+15)^2=-64 | | 10x+2=1x+13 | | 10x+2=1×+13 | | 0.33333(6x+30)=4x+2(x-7) | | 9(z-6)=4(z+4 | | 0.3(6x+30)=4x+2(x-7) | | Y=33x+45 |